Skip to Main Content

Latest News

Advertisement
Advertise Here
July 19, 2010
Volume 88, Number 29
p. 6
DOI: 10.1021/CEN071510135042

Moving Forward On Algal Biofuels

Alternative Energy: Exxonmobil, Synthetic Genomics facility will help optimize algal fuel production

Ann M. Thayer

  • Print this article
  • Email the editor

Latest News



October 28, 2011

Speedy Homemade-Explosive Detector

Forensic Chemistry: A new method could increase the number of explosives detected by airport screeners.

Solar Panel Makers Cry Foul

Trade: U.S. companies complain of market dumping by China.

Novartis To Cut 2,000 Jobs

Layoffs follow similar moves by Amgen, AstraZeneca.

Nations Break Impasse On Waste

Environment: Ban to halt export of hazardous waste to developing world.

New Leader For Lawrence Livermore

Penrose (Parney) Albright will direct DOE national lab.

Hair Reveals Source Of People's Exposure To Mercury

Toxic Exposure: Mercury isotopes in human hair illuminate dietary and industrial sources.

Why The Long Fat?

Cancer Biochemistry: Mass spectrometry follows the metabolism of very long fatty acids in cancer cells.

Text Size A A

A researcher takes an algae sample from an open-pond system. Business Wire
A researcher takes an algae sample from an open-pond system.

ExxonMobil and Synthetic Genomics Inc. (SGI) opened a greenhouse in La Jolla, Calif., last week to begin testing methods to produce affordable biofuel feedstocks from algae. The two companies became partners a year ago when Exxon agreed to invest $600 million over the next decade in R&D at SGI and in its own labs.

Algae are considered a promising biofuel starting point because they are fast-growing and can be raised on non-arable land. Various companies, from biotech start-ups to Dow Chemical, are pursuing algae-derived biofuels, but the Exxon-SGI alliance is by far the most financially ambitious.

Moving out of the lab into real sunlight is “a small, but important, step,” SGI CEO J. Craig Venter said at a press conference. Although the partners are not yet using a real-world environment, they will begin assessing natural and engineered strains of algae in systems that range from open ponds to closed photobioreactors. They plan to evaluate and optimize growth conditions, oil production, harvesting, and recovery.

The collaborators also have conducted life-cycle and sustainability studies to determine the impact of biofuel harvesting on greenhouse gas emissions, as well as on land and water use. In an effort to be independent of agricultural resources, their process uses sunlight, salt water, and carbon dioxide, Venter explained. “Fuels cannot compete with agriculture if this is going be successful.”

They hope to find or design a strain of algae that can secrete the desired long-chain hydrocarbons. “The greenhouse will enable us to go into the next phase of our development plan, which will include a larger test facility outside,” said F. Emil Jacobs, ExxonMobil’s vice president for research. Scaling up into that facility is expected in mid-2011.

So far, the algal products look similar to intermediate streams processed in existing refineries, Jacobs pointed out. Both he and Venter emphasized that the project is long-term and that it will take billions of dollars to reach commercial scale. “We are committed to this activity and will spend money necessary to be successful,” Jacobs remarked.

Chemical & Engineering News
ISSN 0009-2347
Copyright © 2011 American Chemical Society
  • Print this article
  • Email the editor

Services & Tools

ACS Resources

ACS is the leading employment source for recruiting scientific professionals. ACS Careers and C&EN Classifieds provide employers direct access to scientific talent both in print and online. Jobseekers | Employers

» Join ACS

Join more than 161,000 professionals in the chemical sciences world-wide, as a member of the American Chemical Society.
» Join Now!