Skip to Main Content

Latest News

Advertisement
Advertise Here
March 3, 2011

The Wide Open (Dynamic) Range

Clinical Diagnostics: Improved immunoassay measures prostate cancer biomarker over a range of four orders of magnitude

Jeffrey M. Perkel

COUNTING SPOTS A new immunoassay can detect antigen concentrations over several orders of magnitude. Anal. Chem.
COUNTING SPOTS A new immunoassay can detect antigen concentrations over several orders of magnitude.
  • Print this article
  • Email the editor

Latest News



October 28, 2011

Speedy Homemade-Explosive Detector

Forensic Chemistry: A new method could increase the number of explosives detected by airport screeners.

Solar Panel Makers Cry Foul

Trade: U.S. companies complain of market dumping by China.

Novartis To Cut 2,000 Jobs

Layoffs follow similar moves by Amgen, AstraZeneca.

Nations Break Impasse On Waste

Environment: Ban to halt export of hazardous waste to developing world.

New Leader For Lawrence Livermore

Penrose (Parney) Albright will direct DOE national lab.

Hair Reveals Source Of People's Exposure To Mercury

Toxic Exposure: Mercury isotopes in human hair illuminate dietary and industrial sources.

Why The Long Fat?

Cancer Biochemistry: Mass spectrometry follows the metabolism of very long fatty acids in cancer cells.

Text Size A A

In the wake of a radical prostatectomy, serum levels of prostate-specific antigen (PSA), a prostate cancer biomarker, generally dive below the detection limit of clinical assays. But the protein may not have disappeared. Rising PSA levels can presage disease recurrence, so doctors would like to catch such relapses early. Now a clinical diagnostics company has improved a PSA assay to detect the marker over a wide range of concentrations, even down to attomolar levels (Anal. Chem., DOI: 10.1021/ac103161b).

In 2010, researchers at diagnostics development company Quanterix in Cambridge, Mass., described a PSA assay that could measure between about 0.4 and 400 femtomolar in PSA—extending some four orders of magnitude below the limit of standard clinical immunoassays (Nat. Biotechnol., DOI: 10.1038/nbt.1641). But PSA levels in patients can vary greatly, and this assay wasn't useful for higher concentrations of the protein. In those cases, a clinician would have to dilute the samples and redo the test. The team wanted to extend the dynamic range of their assay by another order of magnitude.

The current and 2010 assays are variants of a standard enzyme-linked immunosorbent assay, says lead author David Duffy. First, a researcher captures PSA with antibody-coated beads. The researcher then adds a second PSA antibody and an enzyme that binds to it. Finally, the scientist loads the beads into a so-called "single-molecule array," which contains 50-femtoliter wells, and adds a molecule that fluoresces when it reacts with the enzyme.

The difference between the new and 2010 assays is how the researcher counts the glowing beads. When PSA levels are low, most beads don't glow. The researcher asks a simple digital or yes/no question of each bead: is it glowing or not? At low PSA concentrations each glowing bead attaches to only one or a small number of antigen molecules, so fluorescence intensity doesn't matter. At higher PSA concentrations, every bead glows, so simple bead counting no longer works. Instead, the researcher uses fluorescence intensity to count the enzymes, and thus amount of PSA, on each bead. This is the assay's analog mode.

Using this combined digital-analog approach, the researchers first demonstrated the detection limits of the assay by directly attaching the enzyme at varying concentrations to beads. The assay could detect concentrations over six orders of magnitude, from 220 zeptomolar to 316 femtomolar. When they tested the assay with real human serum they could measure PSA concentrations between 250 attomolar and 3 picomolar.

Measuring PSA over four orders of magnitude is "really powerful," says Duffy: With such a dynamic range, clinicians could test patients with varying PSA levels in one pass, he says.

"These technologies are game changing," says John Todd, vice president of research and development at Singulex, another diagnostics firm. Ultrasensitive immunoassays, Todd says, could enable biomarker research that would illuminate, for instance, the clinical implications of rising but sub-picomolar levels of PSA.

Shan Xiang Wang, who develops ultrasensitive immunoassays at Stanford University, calls the Quanterix assay "very impressive." What the company needs, he says, is "a real killer application," such as early cancer detection or the ability to detect multiple biomarkers at once. "That would be a great boost to their commercialization potential," Wang says.

Chemical & Engineering News
ISSN 0009-2347
Copyright © 2011 American Chemical Society
  • Print this article
  • Email the editor

Services & Tools

ACS Resources

ACS is the leading employment source for recruiting scientific professionals. ACS Careers and C&EN Classifieds provide employers direct access to scientific talent both in print and online. Jobseekers | Employers

» Join ACS

Join more than 161,000 professionals in the chemical sciences world-wide, as a member of the American Chemical Society.
» Join Now!