How to Advertise
Home | This Week's Contents  |  C&EN ClassifiedsSearch C&EN Online

Millennium Special Report
C&EN 75th Anniversary Issue
Related Stories
Rhodopsin Revelation
[C&EN, Aug. 7, 2000]
Mimicking Natural Photosysnthesis
[C&EN, Oct. 26, 1998]
Related Site
photosystem I
E-mail this article to a friend
Print this article
E-mail the editor
 Table of Contents
 C&EN Classifieds
 News of the Week
 Cover Story
 Editor's Page
 Government & Policy
  Government & Policy
 ACS News
 Digital Briefs
 ACS Comments
 Career & Employment
 Special Reports
 What's That Stuff?
 Pharmaceutical Century

 Hot Articles
 Safety  Letters

 Back Issues

 How to Subscribe
 Subscription Changes
 About C&EN
 Copyright Permission
 E-mail webmaster
June 25,
Volume 79, Number 26
CENEAR 79 26 pp. 9
ISSN 0009-2347
[Previous Story] [Next Story]

German team unveils high-resolution view of key photosynthesis site


After more than 10 years of effort, a team of German chemists and crystallographers has worked out the three-dimensional structure of photosystem I, the larger of the two huge protein-cofactor complexes where the initial steps of photosynthesis take place in plants, green algae, and cyanobacteria. It is, in the words of Graham R. Fleming, a chemistry professor at the University of California, Berkeley, and director of the Physical Biosciences Division of Lawrence Berkeley National Laboratory, "an absolutely spectacular piece of work."

SUN CATCHER Each lobe of clover-leaf-shaped crystal of photosystem I contains 12 different proteins, shown here in different colors with only the protein backbone of each depicted. Amid the proteins are 96 chlorophylls (pale yellow) as well as other cofactors (gray).
"When we see this structure, we see a lot of things that nobody expected."

Petra Fromme,
Technical University of Berlin

The photosystem, which the researchers crystallized in its trimeric form, contains 12 different proteins in each monomer, along with 96 chlorophylls and more than 30 other cofactors. For the first time, the structure allows them to exactly locate each of the chlorophylls within the protein complex and to begin to figure out how these molecules work together as a system to gather solar energy and then transfer that energy to the center of the complex, where electron-transfer reactions convert it to the chemical energy that drives almost all life on Earth.

The work is a long-term collaboration between a team of biophysical chemists at the Technical University of Berlin led by Petra Fromme and Horst T. Witt and a team of crystallographers at the Free University of Berlin led by Norbert Krauss and Wolfram Saenger [Nature, 411, 909 (2001)].

The structure has revealed some remarkable surprises. For example, the magnesium ion at the center of the chlorophyll molecule that serves as the primary acceptor of electrons in the photosystem has as a ligand a sulfur atom from a nearby methionine residue. Fromme believes this is the first example in all of inorganic chemistry of sulfur ligating to magnesium.

"That's not just weird," Fleming explains, "it's likely to be important. This particular chlorophyll is the strongest reducing agent in nature, and nobody has had any clue why. I suspect that it has something to do with that sulfur ligand."

In addition to providing a close-up view of an important biochemical complex, the work is also a crystallographic tour de force. High-resolution crystal structures have been determined for fewer than 20 membrane-bound protein complexes, compared with some 4,000 soluble proteins. In addition, the most complex of the earlier structures contained fewer than a dozen cofactors, not the 127 found in each unit of this structure.

No crystallization agents were added to this protein complex to help it crystallize, Fromme says. Instead the chemists used small crystals to work out the entire phase diagram for the complex, mapping its response to changes in salt concentration, pH, and other physical chemical parameters. They then used a sophisticated seeding technique in which small crystals were used to grow medium-sized ones, and then, by finely adjusting the salt concentration, the medium-sized crystals were converted into one large crystal. This crystallization, Fromme says, "is more science than art."

[Previous Story] [Next Story]


Chemical & Engineering News
Copyright © 2001 American Chemical Society

How to Advertise
Home | Table of Contents | News of the Week | Cover Story
Business | Government & Policy | Science/Technology
Chemical & Engineering News
Copyright © 2000 American Chemical Society - All Right Reserved
1155 16th Street NW • Washington DC 20036 • (202) 872-4600 • (800) 227-5558

CASChemPortChemCenterPubs Page