[an error occurred while processing this directive]
Skip to Main Content

Latest News

February 25, 2008
Volume 86, Number 08
p. 9

Materials Science

Rubber Heals Itself

Small molecules yield self-mending property

Rachel A. Petkewich

Video

Put To The Test

Researcher demonstrates how the new rubber-like material can be cut, joined together, fixed, and stretched as if the break never happened.

François Tournilhac & Ludwik Leibler, CNRS/ESPCI

Launch Video

* Macromedia Flash Player 8 is required to view gallery.

SEVER, UNITE, STRETCH, and repeat. That's what you can do with a new class of materials called self-healing rubber (Nature 2008, 451, 977).

Chemistry professor Ludwik Leibler and colleagues at the Paris-based Industrial Physics & Chemistry Higher Educational Institution have created small-molecule-based supramolecular network materials with rubberlike properties that can repair themselves at room temperature. Rubber elasticity is traditionally a property of macromolecules, as small-molecule assemblies are generally too crystalline to bend. And although self-healing materials have been made before, they usually require heat to repair cracks and breaks.

The new small molecules—which are made from fatty acids and a combination of one, two, or three different amide groups—hydrogen-bond to one another to form the supramolecular networks. Small molecules that assemble in a network and undergo reversible cross-linking can behave like rubber, Leibler says. "The self-mending property is possible thanks to the presence of a long-lived and large excess of nonlinked, open hydrogen bonds on the fractured surfaces," he explains. The pieces must be physically placed together to mend.

Leibler says the new materials are not adhesives, because only cut or broken surfaces attach. The surfaces can self-heal if they have been apart less than one week at room temperature, or thermal equilibrium will prevent hydrogen bonding.

Building Blocks Self-healing supramolecular networks assemble from fatty acid-based small molecules containing combinations of three amides-amidoethyl imidazolidone (top left), di(amidoethyl) urea (top right), and diamidotetraethyl triurea.

From a chemistry point of view, using fatty acid derivatives to build multifunctional materials and new functional groups able to associate via multiple hydrogen bonds clearly opens a new avenue for product development, Leibler says.

Polymer chemist Krzysztof Matyjaszewski of Carnegie Mellon University commends the researchers' use of a simple and renewable resource—vegetable oil—as a source of fatty acids. He says previous self-healing material systems have generally relied on complex chemistry and processing.

Arkema, a French chemical maker, is planning to develop commercial products based on the new supramolecular chemical technology.

Put To The Test

Researcher demonstrates how the new rubber-like material can be cut, joined together, fixed, and stretched as if the break never happened.

François Tournilhac & Ludwik Leibler, CNRS/ESPCI

Save/Share »

Chemical & Engineering News
ISSN 0009-2347
Copyright © 2009 American Chemical Society

Tools

Save/Share »

Login

Note

Our log-in process has changed. You need an ACS ID to access member-only content.


Username:

Password:

Questions or Problems?

Adjust text size:

A- A+

Articles By Topic