[an error occurred while processing this directive]
Skip to Main Content

Latest News

November 23, 2009
Volume 87, Number 47
p. 10

Giant Leap For Obstinate Targets

Sugar Chemistry: Parallel combinatorial synthesis yields 12 hard-to-make oligosaccharides

Stuart A. Borman

This heparan sulfate tetrasaccharide, made by the Boons group’s new modular method, shows good activity as an inhibitor of BACE-1, an Alzheimer’s-related enzyme.
This heparan sulfate tetrasaccharide, made by the Boons group’s new modular method, shows good activity as an inhibitor of BACE-1, an Alzheimer’s-related enzyme.
  • Print this article
  • Email the editor

Latest News



October 28, 2011

Speedy Homemade-Explosive Detector

Forensic Chemistry: A new method could increase the number of explosives detected by airport screeners.

Solar Panel Makers Cry Foul

Trade: U.S. companies complain of market dumping by China.

Novartis To Cut 2,000 Jobs

Layoffs follow similar moves by Amgen, AstraZeneca.

Nations Break Impasse On Waste

Environment: Ban to halt export of hazardous waste to developing world.

New Leader For Lawrence Livermore

Penrose (Parney) Albright will direct DOE national lab.

Hair Reveals Source Of People's Exposure To Mercury

Toxic Exposure: Mercury isotopes in human hair illuminate dietary and industrial sources.

Why The Long Fat?

Cancer Biochemistry: Mass spectrometry follows the metabolism of very long fatty acids in cancer cells.

Text Size A A

Thanks to a new method, it may now be possible to prepare many more of the biologically important sugars known as heparan sulfates to enable study of their properties and potential as drugs.

In nature, heparan sulfates are highly sulfated linear polysaccharides similar to the anticoagulant heparin. Smaller versions are of interest as potential drugs, but they are extremely difficult to synthesize. Only about 100 heparan sulfate oligosaccharides had been reported in the literature as of last month. Now make that 112, courtesy of a parallel combinatorial technique that so far has produced a dozen oligosaccharides but has the potential to create many more (J. Am. Chem. Soc., DOI: 10.1021/ja907358k).

Heparan sulfates are involved in a spectrum of biological processes, such as lipid transport, cell growth, and cell adhesion. And changes in heparan sulfate levels have been associated with tumor growth and invasion. Scientists would like to create heparan sulfate variants more conveniently for research and drug screening, but synthesizing even a single one can take a year.

Now, Geert-Jan Boons of the Complex Carbohydrate Research Center at the University of Georgia and coworkers have found a way to make these obstinate structures more accessible: They have created modular disaccharide building blocks that can be combined in numerous ways to produce a range of heparan sulfates.

They demonstrated the approach by creating 12 tetrasaccharides. One is a good inhibitor of BACE-1, an enzyme that catalyzes a key step in Alzheimer’s amyloid plaque production. It’s “an attractive lead for preparation of more potent compounds,” Boons says.

Heparan sulfates are “incredibly difficult to generate,” comments heparin specialist Robert J. Linhardt of Rensselaer Polytechnic Institute. “No one’s ever delivered a collection like this. This approach could be very important for supplying diverse libraries to biologists and medicinal chemists for evaluating structure-activity relationships and novel pharmacological agents.”

The sugars Boons’s team put together via the new method “are all pretty complicated and have high structural diversity,” Linhardt adds. “That suggests this method is workable at least for tetrasaccharides and hexasaccharides, which are the critical size for protein binding in most cases. I think this holds a lot of promise for the field.”

Chemical & Engineering News
ISSN 0009-2347
Copyright © 2011 American Chemical Society
  • Print this article
  • Email the editor

Services & Tools

ACS Resources

ACS is the leading employment source for recruiting scientific professionals. ACS Careers and C&EN Classifieds provide employers direct access to scientific talent both in print and online. Jobseekers | Employers

» Join ACS

Join more than 161,000 professionals in the chemical sciences world-wide, as a member of the American Chemical Society.
» Join Now!