-
May 17, 2010 - Volume 88, Number 20
- p. 12
Latest News
Related Stories
Topics Covered
Latest News
October 28, 2011
Speedy Homemade-Explosive Detector
Forensic Chemistry: A new method could increase the number of explosives detected by airport screeners.
Solar Panel Makers Cry Foul
Trade: U.S. companies complain of market dumping by China.
Novartis To Cut 2,000 Jobs
Layoffs follow similar moves by Amgen, AstraZeneca.
Nations Break Impasse On Waste
Environment: Ban to halt export of hazardous waste to developing world.
New Leader For Lawrence Livermore
Penrose (Parney) Albright will direct DOE national lab.
Hair Reveals Source Of People's Exposure To Mercury
Toxic Exposure: Mercury isotopes in human hair illuminate dietary and industrial sources.
Why The Long Fat?
Cancer Biochemistry: Mass spectrometry follows the metabolism of very long fatty acids in cancer cells.

Chemists at Emory University have reprogrammed bacteria to seek and degrade the herbicide atrazine (Nat. Chem. Biol., DOI: 10.1038/nchembio.369). Such bacteria could prove useful for bioremediation of atrazine, which is toxic to animals and possibly humans as well.
Justin P. Gallivan, Joy Sinha, and Samuel J. Reyes engineer Escherichia coli to produce RNA molecules called riboswitches that change conformation when they bind atrazine. The switching activates the translation of a protein called CheZ that allows the bacteria to move and chase atrazine in their surroundings. “The riboswitch acts like a molecular brake,” Gallivan says. “When you add atrazine, you release the brake and the cells can move.”
The usual way to find riboswitches is to start with an RNA that tightly binds the target. “You can imagine some RNAs that might bind atrazine very well but be incapable of undergoing a conformational change that allows you to get a change in gene expression,” Gallivan says. He and his coworkers screened a library of RNAs with moderate affinity for atrazine to find the best riboswitch. “By doing in vivo selection, we can find switches that work the way we intend,” he says.
The team also rewired the bacteria to produce an enzyme that converts atrazine to hydroxyatrazine, which does not act as an herbicide and is not as toxic.
The riboswitch binds atrazine but not its degradation product. “If you’re chasing something nasty in the environment, you want to break it down and keep looking for more of the nasty thing rather than get hung up on the product,” Gallivan says.
“This work represents a clever use of riboswitches to engineer E. coli cells to show a chemotactic response to the herbicide atrazine,” says Lawrence P. Wackett, a biochemist at the University of Minnesota, who identified the enzymes that degrade atrazine. “It is currently unclear what advantage this offers in bioremediation applications, but it may be useful as a methodology for selecting atrazine-metabolizing clones with differential activity.”
- Chemical & Engineering News
- ISSN 0009-2347
- Copyright © 2011 American Chemical Society
Services & Tools
ACS Resources
ACS Careers
ACS is the leading employment source for recruiting scientific professionals. ACS Careers and C&EN Classifieds provide employers direct access to scientific talent both in print and online. Jobseekers | Employers
» Join ACS
Join more than 161,000 professionals in the chemical sciences world-wide, as a member of the American Chemical Society.
» Join Now!