[an error occurred while processing this directive]
Skip to Main Content

Latest News

July 26, 2010
Volume 88, Number 30
p. 8

Fullerenes Found In Space

Astrochemistry: Astronomers detect C60 and C70 in dying star

Elizabeth K. Wilson

Astronomers have detected fullerenes in a planetary nebula, shown in this artist’s rendering. T. Pyle/JPL Caltech/NASA
Astronomers have detected fullerenes in a planetary nebula, shown in this artist’s rendering.
  • Print this article
  • Email the editor

Latest News



October 28, 2011

Speedy Homemade-Explosive Detector

Forensic Chemistry: A new method could increase the number of explosives detected by airport screeners.

Solar Panel Makers Cry Foul

Trade: U.S. companies complain of market dumping by China.

Novartis To Cut 2,000 Jobs

Layoffs follow similar moves by Amgen, AstraZeneca.

Nations Break Impasse On Waste

Environment: Ban to halt export of hazardous waste to developing world.

New Leader For Lawrence Livermore

Penrose (Parney) Albright will direct DOE national lab.

Hair Reveals Source Of People's Exposure To Mercury

Toxic Exposure: Mercury isotopes in human hair illuminate dietary and industrial sources.

Why The Long Fat?

Cancer Biochemistry: Mass spectrometry follows the metabolism of very long fatty acids in cancer cells.

Text Size A A

Large amounts of the fullerenes C60 and C70 have been detected in a blast of gas from a dying star—the first unambiguous finding of this form of carbon in space.

The discovery suggests that fullerenes form readily in space, given the right conditions.

Fullerenes, stable and inert, have long been believed to be able to exist in space, particularly near the environment of carbon-rich stars, but evidence has been limited to inconclusive spectra and traces of the molecules in meteorites that fell to Earth.

Astronomer Jan Cami of the University of Western Ontario and his colleagues trained NASA’s Spitzer Space Telescope on a carbon-rich planetary nebula—a star in the late stages of life—and found all of the characteristic infrared emission spectral lines of cold, neutral C60 and C70 (Science, DOI: 10.1126/science.1192035).

Pascale Ehrenfreund, professor of astrobiology at the University of Amsterdam, notes that the detection is “rather unambiguous,” and that these new data are “the best I have seen so far.”

The giant envelopes of gas thrown off by planetary nebulas are rich sources of big molecules, formed by chemical reactions among elements. Many of them are heavy elements such as carbon, which the star has synthesized during its life. These species then go on to populate the interstellar medium.

“The detection of fullerenes and the identification of their formation site are considered one of the priorities in the field of interstellar organic chemistry,” the authors write in their paper.

Previous hunts for fullerenes in planetary nebulas have been difficult because emissions from these stars are often dominated by the strong, complex emissions of another carbon-rich class of molecules, polycyclic aromatic hydrocarbons (PAHs). But in the planetary nebula studied by the authors, there were no signs of PAHs, indicating that the dying star’s environment is unusually hydrogen-poor—an ideal condition for forming fullerenes.

David E. Woon, an astrochemist at the University of Illinois, Urbana-Champaign, points out that the new, recently operational, aircraft-based infrared telescope SOFIA, from NASA and the German Aerospace Center, will be able to add to the study of C60, C70, and other IR-active molecules.

Chemical & Engineering News
ISSN 0009-2347
Copyright © 2011 American Chemical Society
  • Print this article
  • Email the editor

Services & Tools

ACS Resources

ACS is the leading employment source for recruiting scientific professionals. ACS Careers and C&EN Classifieds provide employers direct access to scientific talent both in print and online. Jobseekers | Employers

» Join ACS

Join more than 161,000 professionals in the chemical sciences world-wide, as a member of the American Chemical Society.
» Join Now!