[an error occurred while processing this directive]
Skip to Main Content

Latest News

Advertisement
Advertise Here
September 20, 2011

Lowering The Brain’s Drawbridge

Drug Delivery: New technique shepherds large molecules across the blood-brain barrier in mice

Carmen Drahl

  • Print this article
  • Email the editor

Latest News



October 28, 2011

Speedy Homemade-Explosive Detector

Forensic Chemistry: A new method could increase the number of explosives detected by airport screeners.

Solar Panel Makers Cry Foul

Trade: U.S. companies complain of market dumping by China.

Novartis To Cut 2,000 Jobs

Layoffs follow similar moves by Amgen, AstraZeneca.

Nations Break Impasse On Waste

Environment: Ban to halt export of hazardous waste to developing world.

New Leader For Lawrence Livermore

Penrose (Parney) Albright will direct DOE national lab.

Hair Reveals Source Of People's Exposure To Mercury

Toxic Exposure: Mercury isotopes in human hair illuminate dietary and industrial sources.

Why The Long Fat?

Cancer Biochemistry: Mass spectrometry follows the metabolism of very long fatty acids in cancer cells.

Text Size A A

By activating a biochemical signaling pathway, researchers have toppled the barrier that regulates molecules’ entry into the brain (J. Neurosci., DOI: 10.1523/jneurosci.3337-11.2011). The find could lead to more effective drug delivery options for Alzheimer’s disease or brain tumors.

The so-called blood-brain barrier is a tight-knit layer of specialized cells designed to shut out most molecular visitors to the brain. Medicinal chemists can circumvent the barrier by tweaking drug candidates, but such efforts don’t always succeed in treating the intended diseases successfully. Moreover, generalized options for traversing the barrier are limited.

Courtesy of Margaret Bynoe
Gate Crashers With help from an adenosine analog, an antibody (pink) enters a mouse’s brain cells (blue, top). Without the analog, the antibody doesn’t enter (bottom).

Now, Margaret S. Bynoe of Cornell University College of Veterinary Medicine and colleagues show that receptors responding to the adenosine triphosphate metabolite adenosine act as a drawbridge for the brain. In mice, they activated adenosine receptor signaling with small-molecule adenosine analogs, including the FDA-approved imaging agent Lexiscan. This opened the brain barricade long enough to allow entry to antibodies or fluorophore-labeled polysaccharides. The length of time the barrier remained open was related to the adenosine analogs’ half-lives in the mice.

Antibodies nearly always get turned away at the brain’s proverbial castle gate, says Quentin R. Smith, a blood-brain barrier expert at Texas Tech University Health Sciences Center. With Bynoe’s technique, “you could open the gate and let the barbarians flood in, and then close the gate to trap them inside,” he says.

Still, Smith says caution is in order when evaluating a general method to penetrate the brain’s defenses. He says it’s important to find out whether deleterious molecules enter the brain when the barrier is compromised, whether altering fluid balance leads to brain swelling, and whether the strategy can also neutralize pump proteins that actively eject compounds from brain cells. “That is the real barrier for many lipophilic small drug compounds,” Smith says of the pump proteins.

“We have just scratched the surface,” Bynoe says. “There is so much to do.” Bynoe has patented the discovery and cofounded a start-up company, Adenios, in Ithaca, N.Y., to further develop the concept. Future experiments in her own lab will test the technique in mice with Alzheimer’s disease.

Chemical & Engineering News
ISSN 0009-2347
Copyright © 2011 American Chemical Society
  • Print this article
  • Email the editor

Services & Tools

ACS Resources

ACS is the leading employment source for recruiting scientific professionals. ACS Careers and C&EN Classifieds provide employers direct access to scientific talent both in print and online. Jobseekers | Employers

» Join ACS

Join more than 161,000 professionals in the chemical sciences world-wide, as a member of the American Chemical Society.
» Join Now!