[an error occurred while processing this directive]
Skip to Main Content

Latest News

Advertisement
Advertise Here
September 19, 2011

Seeing Inside Tears

Biomedical Assay: Using a microfluidic chip, a new method analyzes proteins in tears

Erika Gebel

  • Print this article
  • Email the editor

Latest News



October 28, 2011

Speedy Homemade-Explosive Detector

Forensic Chemistry: A new method could increase the number of explosives detected by airport screeners.

Solar Panel Makers Cry Foul

Trade: U.S. companies complain of market dumping by China.

Novartis To Cut 2,000 Jobs

Layoffs follow similar moves by Amgen, AstraZeneca.

Nations Break Impasse On Waste

Environment: Ban to halt export of hazardous waste to developing world.

New Leader For Lawrence Livermore

Penrose (Parney) Albright will direct DOE national lab.

Hair Reveals Source Of People's Exposure To Mercury

Toxic Exposure: Mercury isotopes in human hair illuminate dietary and industrial sources.

Why The Long Fat?

Cancer Biochemistry: Mass spectrometry follows the metabolism of very long fatty acids in cancer cells.

Text Size A A

Don't Cry Proteins in tears can signal eye disease Shutterstock
Don't Cry Proteins in tears can signal eye disease

Tears reveal more than just emotion: The salty drops may harbor signs of disease. Researchers have now developed a speedy microfluidics-based assay that detects specific proteins in tears, which could someday help doctors diagnose and treat eye diseases (Anal. Chem., DOI: 10.1021/ac202061v).

Clinics routinely test blood or urine but not tears, says Amy Herr of the University of California, Berkeley, because tears are difficult to analyze. Traditional diagnostic methods, like enzyme-linked immunosorbant assay (ELISA), use an immobilized antibody to capture proteins of interest on a surface. But proteins in tears are notoriously alkaline, which makes them stick to surfaces willy-nilly. The resulting data are difficult to interpret, Herr says.

So Herr and a student, Kelly Karns, developed an assay that doesn’t require participation of any surfaces. Instead, they mix a fluorescently labeled antibody with tear fluid and then load the mixture onto a tiny polacrylamide gel about 1 mm long and 80 µm wide in a channel of a microfluidic chip. The researchers then apply an electric field to the chip, which causes proteins of different sizes to travel at different rates along the gel. They use a fluorescent microscope to record images of the gel, which show a distinct band for the antibody-tear protein complex. The intensity of the fluorescence allows them to quantify the concentration of the tear protein that the antibody binds.

As a test case, the researchers detected a tear protein called lactoferrin. Research has linked this protein to Sjögren’s syndrome, an autoimmune disease that destroys mucus-producing cells in the body and causes, among other ills, dry eye. The researchers washed a tiny amount of tears, less than a microliter, off blotting paper that had been dabbed on the eyes of either people with Sjögren’s syndrome or healthy volunteers. Herr and Karn then mixed the diluted tears with an antibody to lactoferrin and loaded the mixture onto the microfluidic device. The proteins migrated along the gel in less than five seconds. The fluorescence images revealed that people with Sjögren’s Syndrome had around one tenth as much lactoferrin in their tears as those without the disease.

Sjögren’s syndrome is just one cause of dry eye, a problem that affects millions, says Nancy McNamara of the University of California, San Francisco. Herr’s microfluidic device could help researchers diagnose, understand, and treat these conditions, she says, in which tear sources are scarce. “It’s a really interesting technology,” says McNamara. “It’s definitely something I can see having a clinical application in the future.”

Chemical & Engineering News
ISSN 0009-2347
Copyright © 2011 American Chemical Society
  • Print this article
  • Email the editor

Services & Tools

ACS Resources

ACS is the leading employment source for recruiting scientific professionals. ACS Careers and C&EN Classifieds provide employers direct access to scientific talent both in print and online. Jobseekers | Employers

» Join ACS

Join more than 161,000 professionals in the chemical sciences world-wide, as a member of the American Chemical Society.
» Join Now!