[an error occurred while processing this directive]
Skip to Main Content

Latest News

Advertise Here
October 10, 2011
Volume 89, Number 41
p. 10

New Cancer Vaccine Strategy

Cancer Treatment: Two-headed molecule summons immune-system attack

Laura Cassiday

The left end of this small molecule can bind to a prostate cancer cell antigen while the right end recruits human antibodies.
The left end of this small molecule can bind to a prostate cancer cell antigen while the right end recruits human antibodies.
  • Print this article
  • Email the editor

Latest News

October 28, 2011

Speedy Homemade-Explosive Detector

Forensic Chemistry: A new method could increase the number of explosives detected by airport screeners.

Solar Panel Makers Cry Foul

Trade: U.S. companies complain of market dumping by China.

Novartis To Cut 2,000 Jobs

Layoffs follow similar moves by Amgen, AstraZeneca.

Nations Break Impasse On Waste

Environment: Ban to halt export of hazardous waste to developing world.

New Leader For Lawrence Livermore

Penrose (Parney) Albright will direct DOE national lab.

Hair Reveals Source Of People's Exposure To Mercury

Toxic Exposure: Mercury isotopes in human hair illuminate dietary and industrial sources.

Why The Long Fat?

Cancer Biochemistry: Mass spectrometry follows the metabolism of very long fatty acids in cancer cells.

Text Size A A

A two-headed small molecule could marshal a cancer patient’s immune system to seek out and destroy prostate tumor cells.

In current immunotherapy strategies, researchers target cancer cells by linking chemotherapy drugs or radionuclides to antibodies for proteins on the cells’ surface. Although the antibodies shuttle most of these toxic agents to cancer cells, the drugs can still hit healthy cells, leading to unwanted side effects.

“We wanted to develop a strategy in which a patient’s own immune system, rather than a toxic compound, kills prostate cancer cells,” says David A. Spiegel, a chemist at Yale University.

To do so, Spiegel and his collaborators designed a molecule that consists of two chemical groups linked together: 2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) and 2,4-dinitrophenyl (DNP). Other researchers have shown that DUPA selectively binds to a unique prostate cancer cell protein (Mol. Pharm., DOI: 10.1021/mp900069d). DNP is a well-known environmental contaminant that, for unknown reasons, most people already have antibodies against. The team envisioned that the DUPA end of the molecule would grab on to prostate cancer cells and the DNP end would attract these circulating antibodies to trigger an immune response to destroy the cells.

The researchers tested their hypothesis in mice that had human prostate tumors grafted under the skin of their right flanks. After two weeks of three treatments per week of the two-headed molecule, tumors in the mice were about 80% smaller than those in mice treated with DUPA alone (ACS Chem. Biol., DOI: 10.1021/cb200222s). When the researchers analyzed tumor tissue samples from mice treated with the two-headed molecule, they discovered that lymphocytes called natural killer cells had infiltrated the tumor.

Laura L. Kiessling, a biochemist at the University of Wisconsin, Madison, says that, because the small molecule is modular, the new approach “lays the groundwork” for targeting not only prostate cancer, but also other cancer types. “In principle, any cell-targeting agent can be combined with an antibody recruitment agent,” she says.

Chemical & Engineering News
ISSN 0009-2347
Copyright © 2011 American Chemical Society
  • Print this article
  • Email the editor

Services & Tools

ACS Resources

ACS is the leading employment source for recruiting scientific professionals. ACS Careers and C&EN Classifieds provide employers direct access to scientific talent both in print and online. Jobseekers | Employers

» Join ACS

Join more than 161,000 professionals in the chemical sciences world-wide, as a member of the American Chemical Society.
» Join Now!