[an error occurred while processing this directive]
Skip to Main Content

Latest News

Advertisement
Advertise Here
October 13, 2011

Tracking A Lake's Single-Celled Life

Biological Monitoring: Researchers watch changes in populations of microorganisms in lakes

Naomi Lubick

  • Print this article
  • Email the editor

Latest News



October 28, 2011

Speedy Homemade-Explosive Detector

Forensic Chemistry: A new method could increase the number of explosives detected by airport screeners.

Solar Panel Makers Cry Foul

Trade: U.S. companies complain of market dumping by China.

Novartis To Cut 2,000 Jobs

Layoffs follow similar moves by Amgen, AstraZeneca.

Nations Break Impasse On Waste

Environment: Ban to halt export of hazardous waste to developing world.

New Leader For Lawrence Livermore

Penrose (Parney) Albright will direct DOE national lab.

Hair Reveals Source Of People's Exposure To Mercury

Toxic Exposure: Mercury isotopes in human hair illuminate dietary and industrial sources.

Why The Long Fat?

Cancer Biochemistry: Mass spectrometry follows the metabolism of very long fatty acids in cancer cells.

Text Size A A

Researcher Francesco Pomati prepares a probe for real-time monitoring of microorganisms in Lake Lugano, Switzerland. Marco Simona, Science Institute of the Earth
No Hands Researcher Francesco Pomati prepares a probe for real-time monitoring of microorganisms in Lake Lugano, Switzerland.

Life in a freshwater lake changes from day to day, with swings in temperature and water chemistry. To track those changes and the ways phytoplankton and other single-celled organisms respond, ecologists must conduct tedious microscope work and rely on sporadic field sampling. Now a new method automates the task, with an eye toward forecasting drinking water quality (Environ. Sci. Technol., DOI: 10.1021/es201934n).

Led by Francesco Pomati of the Swiss Federal Institute of Aquatic Science and Technology, researchers paired and automated the monitoring of two commercially available devices: a vertical depth monitor and a buoy containing a flow cytometer. The cytometer, a biological tool that counts and characterizes single cells, can describe cell size and shape, allowing identification of organisms, as well as monitoring characteristics like chlorophyll content, which can signal biological activity. The vertical monitor tracks physical and chemical conditions in the water column.

The researchers tested their floating setup over 34 days in Lake Lugano, at the border of Switzerland and Italy. As often as six times a day, the monitoring platform collected data about changes in populations of different species, distinguishing between organisms such as free-floating cyanobacteria and phytoplankton that swim using cilia. Along with monitoring daily shifts, the researchers were able to track population changes caused by a three-day storm that mixed shallow and deeper water in the lake.

The monitoring data could feed into models that forecast water quality, particularly for drinking water reservoirs, comments Justin Brookes, of the University of Adelaide, in Australia: Lake-living organisms can affect water taste and odor, as well as create toxic algal blooms.

Chemical & Engineering News
ISSN 0009-2347
Copyright © 2011 American Chemical Society
  • Print this article
  • Email the editor

Services & Tools

ACS Resources

ACS is the leading employment source for recruiting scientific professionals. ACS Careers and C&EN Classifieds provide employers direct access to scientific talent both in print and online. Jobseekers | Employers

» Join ACS

Join more than 161,000 professionals in the chemical sciences world-wide, as a member of the American Chemical Society.
» Join Now!