[an error occurred while processing this directive]
Skip to Main Content

Science & Technology

March 29, 2010
Volume 88, Number 13
Web Exclusive

What's That Stuff?

Body Armor

High-tech ceramics protect soldiers from a wide range of ballistic threats

William G. Schulz

  • Print this article
  • Email the editor

More Science Stories

October 24, 2011

Bryostatins Retain Promise

(October 24, 2011 | Vol. 89 Issue 43 | pp. 10-17)

New results in total synthesis reinvigorate a 40-year-old field of research.

For Cave's Art, An Uncertain Future

(October 24, 2011 | Vol. 89 Issue 43 | pp. 38-40)

Disagreement on conservation course of action complicates a potential reopening.

Cancer Stem Cells

(October 24, 2011 | Vol. 89 Issue 43 | pp. 41-43)

Researchers zero in on the pathways that allow cancer to bounce back after treatment.

What's That Stuff? Blue Jeans

(October 24, 2011 | Vol. 89 Issue 43 | p. 44)

Making the iconic pants requires both color-addition and color-removal chemistry.

Shedding Nanoparticles

(October 24, 2011 | Vol. 89 Issue 43 | p. 5)

Materials Science: Chemists observe metal objects sloughing off ions to form nanoparticles.

Modifying Messenger RNA

(October 24, 2011 | Vol. 89 Issue 43 | p. 7)

Chemical Biology: Methylated bases in mRNA may have roles in gene regulation and obesity.

Lab-On-A-Chip For Planets, Moons

(October 24, 2011 | Vol. 89 Issue 43 | p. 8)

Microfluidics: Automated chip is designed to detect extraterrestrial amino acids.

New Editor For Analytical Chemistry

(October 24, 2011 | Vol. 89 Issue 43 | p. 9)

Publishing: Jonathan Sweedler to take the helm.

Science & Technology Concentrates

(October 24, 2011 | Vol. 89 Issue 43 | p. 37)

 

October 17, 2011

Improving Shop Safety

(October 17, 2011 | Vol. 89 Issue 42 | pp. 56-57)

Yale updates policies on machine shop use after student death.

Cleaning Acrylics

(October 17, 2011 | Vol. 89 Issue 42 | pp. 58-59)

Conservation scientists seek new ways to keep modern paintings looking their best.

Detecting H2S In Vivo (Member Content)

(October 17, 2011 | Vol. 89 Issue 42 | p. 60)

Studies could lead to sensitive and selective analyses for tiny signaling agent.

Rules For Design

(October 17, 2011 | Vol. 89 Issue 42 | p. 9)

Materials Science: Guidelines predict structures formed by nanoparticles and DNA linkers.

Identifying Modified Cells

(October 17, 2011 | Vol. 89 Issue 42 | p. 11)

Molecular Biology: Technique tags and enriches cells genetically altered by nucleases.

Linker-Free Molecular Wires

(October 17, 2011 | Vol. 89 Issue 42 | p. 12)

Electronics: Metal-carbon bonds increase electrical conductance.

Asymmetry From A Guest

(October 17, 2011 | Vol. 89 Issue 42 | p. 13)

Stereochemistry: Enzymelike pocket that hosts chiral species controls catalyst's enantioselectivity.

Science & Technology Concentrates

(October 17, 2011 | Vol. 89 Issue 42 | pp. 54-56)

 

Text Size A A

PROTECTIVE BARRIER Ceramic plates slipped into vest pockets create body armor capable of withstanding multiple hits from bullets or other projectiles. U.S. Army
PROTECTIVE BARRIER Ceramic plates slipped into vest pockets create body armor capable of withstanding multiple hits from bullets or other projectiles.

Soldiers deployed in Iraq and Afghanistan face danger every day, but thanks to high-tech ceramics developed since the late 1960s, they have protection against numerous ballistic threats. In best-case scenarios, these ceramics can actually shatter a bullet upon impact, leaving nothing more than possibly a bruise on the warrior.

"As threats change, armor has to change," says James W. McCauley, a materials scientist at the Army Research Laboratory who has studied and helped develop many of the armor ceramics in use today.

Unlike steel, which has long been used as body armor for the military, ceramics have the advantage of being lightweight. They also have a very high degree of hardness—in fact, ceramics are some of the hardest materials known—as well as other desirable properties for ballistic protection.

Most of the ceramic powders used in the U.S.'s body armor are made in Europe or China, says Richard Haber, director of the Ceramic & Composite Materials Center at Rutgers University. However, there is still one manufacturer, Washington Mills Ceramics, in the U.S. Firms that make armor ceramics for the Department of Defense must produce lightweight plates that can withstand more than one ballistic impact, and they must also minimize cost and weight.

How to reduce weight is a primary issue, McCauley says, because it has a direct impact on the mobility of the soldier as well as on the stress placed on the warrior's body. Cost is a factor in the military's standards, given that every solider fighting in today's wars is outfitted with this protection.

The three main types of ceramics used to make body armor are boron carbide, silicon carbide, and aluminum oxide. A fourth type of ceramic is aluminum oxynitride—known as ALON—which can be used to make transparent armor for applications such as goggles and windshields.

The powders used to form these ceramics were once primarily used in abrasives because of their hardness, which is also a useful property for armor, Haber explains. Increasing the hardness of these ceramics, he says, is achieved by grinding them into finer powders. But the more the powder particles are reduced in size, the greater the amount of impurities that are introduced from the grinding equipment. This requires additional cleaning processes. Nanoscale ceramic powders are not currently economically viable, Haber says, and other nanomaterials such as carbon nanotubes cannot yet be made affordably in sufficient quantities to be practical.

Producing ceramic powders requires high temperatures. In the common Acheson process, silicon dioxide and graphite or coal-distilled coke starting materials are converted into silicon carbide electrochemically at very high temperatures. The process uses a huge amount of electricity and also produces a huge amount of carbon dioxide, Haber says.

Making boron carbide requires temperatures of 3,000 °C and also produces CO2, but the ceramic is made in a melt process instead of by electrochemical means. "The melt cools, crystallizes, and is crushed," Haber says. Aluminum oxide and ALON powders are processed via similar high-temperature methods.

With the powders in hand, three manufacturing processes are routes to the final ceramic armor plates, Haber explains. All three processes involve high temperature and are "analogous to what you do in art class" to make ceramics, says Ronald Hoffman, a research physicist at the University of Dayton Research Institute.

Hot-press manufacturing involves shaping the materials in a mold and heating them up to 2,200 °C under pressure. With direct sinter, the materials are shaped and subjected to high heat, but without pressure. And in reaction bonding, the materials are formed to shape, chemically reacted, and heated to about 1,400 °C. These different processes enhance certain performance characteristics of the ceramics and result in cost differences.

Silicon carbide is a little bit softer than boron carbide, which is "the second-hardest material after diamond. Boron carbide literally shatters the bullet," says Marc A. King, president of Ceradyne Armor Systems, a supplier of U.S. military ceramic body armor.

Ceradyne uses the hot-press process at its two manufacturing facilities, located in California and Kentucky, King says. The addition of a composite material on the back side of the ceramic plate—usually a type of high-molecular-weight polyethylene—acts as a catcher's mitt for the bullet fragments, he says. Ceradyne provides both stand-alone ceramic armor and ceramic armor plates that are fitted into vests made of Kevlar, a para-aramid synthetic fiber that is also bullet resistant.

At ALON manufacturer Surmet, "we synthesize our own aluminum oxide powder, form it into a shape we want, then put the material through a series of heat treatments," says Lee Goldman, the firm's vice president of R&D. The material is then cut, ground, and polished to give it transparency. The armor's ability to protect against bullets is based on the overall laminate design, he says, and can withstand armor-piercing rounds and improvised-explosive-device blasts. "We've tested a number of threats," Goldman says.

"A lot of chemical and physical improvements have been made in ceramic manufacturing," Hoffman says. "Improvements in powder chemistry and purity, along with particle-size control coupled with efficient densification control, have led to superior ceramic articles."

Although there is no such thing as "bulletproof," today's armor ceramics provide an unprecedented level of protection and mobility for troops on the ground.

Chemical & Engineering News
ISSN 0009-2347
Copyright © 2011 American Chemical Society
  • Print this article
  • Email the editor

Services & Tools

ACS Resources

ACS is the leading employment source for recruiting scientific professionals. ACS Careers and C&EN Classifieds provide employers direct access to scientific talent both in print and online. Jobseekers | Employers

» Join ACS

Join more than 161,000 professionals in the chemical sciences world-wide, as a member of the American Chemical Society.
» Join Now!