[an error occurred while processing this directive]
Skip to Main Content

Science & Technology Concentrates

Advertisement
Advertise Here
August 29, 2011
Volume 89, Number 35
p. 33

Scaling Up The Axinellamines

A quicker, more efficient, and stereocontrolled route to a key intermediate streamlines natural product syntheses

Bethany Halford

  • Print this article
  • Email the editor

More Science Stories

October 24, 2011

Bryostatins Retain Promise

(October 24, 2011 | Vol. 89 Issue 43 | pp. 10-17)

New results in total synthesis reinvigorate a 40-year-old field of research.

For Cave's Art, An Uncertain Future

(October 24, 2011 | Vol. 89 Issue 43 | pp. 38-40)

Disagreement on conservation course of action complicates a potential reopening.

Cancer Stem Cells

(October 24, 2011 | Vol. 89 Issue 43 | pp. 41-43)

Researchers zero in on the pathways that allow cancer to bounce back after treatment.

What's That Stuff? Blue Jeans

(October 24, 2011 | Vol. 89 Issue 43 | p. 44)

Making the iconic pants requires both color-addition and color-removal chemistry.

Shedding Nanoparticles

(October 24, 2011 | Vol. 89 Issue 43 | p. 5)

Materials Science: Chemists observe metal objects sloughing off ions to form nanoparticles.

Modifying Messenger RNA

(October 24, 2011 | Vol. 89 Issue 43 | p. 7)

Chemical Biology: Methylated bases in mRNA may have roles in gene regulation and obesity.

Lab-On-A-Chip For Planets, Moons

(October 24, 2011 | Vol. 89 Issue 43 | p. 8)

Microfluidics: Automated chip is designed to detect extraterrestrial amino acids.

New Editor For Analytical Chemistry

(October 24, 2011 | Vol. 89 Issue 43 | p. 9)

Publishing: Jonathan Sweedler to take the helm.

Science & Technology Concentrates

(October 24, 2011 | Vol. 89 Issue 43 | p. 37)

 

October 17, 2011

Improving Shop Safety

(October 17, 2011 | Vol. 89 Issue 42 | pp. 56-57)

Yale updates policies on machine shop use after student death.

Cleaning Acrylics

(October 17, 2011 | Vol. 89 Issue 42 | pp. 58-59)

Conservation scientists seek new ways to keep modern paintings looking their best.

Detecting H2S In Vivo (Member Content)

(October 17, 2011 | Vol. 89 Issue 42 | p. 60)

Studies could lead to sensitive and selective analyses for tiny signaling agent.

Rules For Design

(October 17, 2011 | Vol. 89 Issue 42 | p. 9)

Materials Science: Guidelines predict structures formed by nanoparticles and DNA linkers.

Identifying Modified Cells

(October 17, 2011 | Vol. 89 Issue 42 | p. 11)

Molecular Biology: Technique tags and enriches cells genetically altered by nucleases.

Linker-Free Molecular Wires

(October 17, 2011 | Vol. 89 Issue 42 | p. 12)

Electronics: Metal-carbon bonds increase electrical conductance.

Asymmetry From A Guest

(October 17, 2011 | Vol. 89 Issue 42 | p. 13)

Stereochemistry: Enzymelike pocket that hosts chiral species controls catalyst's enantioselectivity.

Science & Technology Concentrates

(October 17, 2011 | Vol. 89 Issue 42 | pp. 54-56)

 

Text Size A A

Spiroaminoketone intermediate

A quicker, more efficient, and stereocontrolled route to a key intermediate in the total syntheses of axinellamines, massadines, and palau’amine has been developed. The route provides access to gram quantities of the natural products—amounts needed to conduct follow-up studies on their biological properties. Scripps Research Institute’s Phil S. Baran recognized a central inefficiency in his group’s syntheses of the aforementioned compounds: All went through a common spiroaminoketone intermediate, which was synthesized in 1% overall yield via a 20-step sequence that proceeded without stereocontrol at the spiro carbon. Along with coworkersShun Su and Rodrigo A. Rodriguez, Baran was able to shorten this route to just eight steps with 13% overall yield and stereocontrol at the spiro carbon (J. Am. Chem. Soc., DOI: 10.1021/ja206191g). Synthetic highlights include an ethylene glycol-assisted Pauson-Khand cycloaddition reaction, an indium/zinc-mediated Barbier-type reaction, and a chlorination-spirocyclization. With gram batches of the spiroaminoketone in hand, Baran’s team went on to synthesize 0.89 g and 0.22 g of axinellamine A and B, respectively, “dramatically surpassing both the efficiency of our previous synthesis and isolation from natural sources,” they note.

Chemical & Engineering News
ISSN 0009-2347
Copyright © 2011 American Chemical Society
  • Print this article
  • Email the editor

Services & Tools

ACS Resources

ACS is the leading employment source for recruiting scientific professionals. ACS Careers and C&EN Classifieds provide employers direct access to scientific talent both in print and online. Jobseekers | Employers

» Join ACS

Join more than 161,000 professionals in the chemical sciences world-wide, as a member of the American Chemical Society.
» Join Now!