Advertisement
Advertise Here
-
September 5, 2011 - Volume 89, Number 36
- pp. 54 - 55
[an error occurred while processing this directive]
New results in total synthesis reinvigorate a 40-year-old field of research.
Disagreement on conservation course of action complicates a potential reopening.
Researchers zero in on the pathways that allow cancer to bounce back after treatment.
Making the iconic pants requires both color-addition and color-removal chemistry.
Materials Science: Chemists observe metal objects sloughing off ions to form nanoparticles.
Chemical Biology: Methylated bases in mRNA may have roles in gene regulation and obesity.
Microfluidics: Automated chip is designed to detect extraterrestrial amino acids.
Publishing: Jonathan Sweedler to take the helm.
Yale updates policies on machine shop use after student death.
Conservation scientists seek new ways to keep modern paintings looking their best.
Studies could lead to sensitive and selective analyses for tiny signaling agent.
Materials Science: Guidelines predict structures formed by nanoparticles and DNA linkers.
Molecular Biology: Technique tags and enriches cells genetically altered by nucleases.
Electronics: Metal-carbon bonds increase electrical conductance.
Stereochemistry: Enzymelike pocket that hosts chiral species controls catalyst's enantioselectivity.
Nanomaterials modified to release nitric oxide, a compound produced by inflammatory cells to kill invading microbes, might be future therapeutics for fighting antibiotic-resistant pathogens, according to a research team led by Mark H. Schoenfisch of the University of North Carolina, Chapel Hill. Building on previous work showing that NO-releasing nanoparticles kill bacteria more efficiently than small-molecule NO donors (ACS Nano, DOI: 10.1021/nn700191f), grad student Yuan Lu and postdoc Bin Sun reported that NO-releasing silica nanorods and polystyrene-capped dendrimers have even better biocidal activity. The researchers modified these materials with N-diazeniumdiolate moieties that break down to form NO when exposed to water. They found that long, thin silica rods (1,100 nm by 100 nm) kill bacteria at a lower dosage and with less NO than do spherical nanoparticles. “We don’t yet know whether the rods pierce the bacteria,” Schoenfisch said. But he thinks a greater contact area between the nanorods and bacteria surfaces leads to better NO delivery. The researchers also found that hydrophobic, polystyrene-capped dendrimers are more effective bacteria killers than are hydrophilic dendrimers, likely because the hydrophobic compounds interact with the bacteria better to locally transfer cargo, he added.
ACS is the leading employment source for recruiting scientific professionals. ACS Careers and C&EN Classifieds provide employers direct access to scientific talent both in print and online. Jobseekers | Employers
Join more than 161,000 professionals in the chemical sciences world-wide, as a member of the American Chemical Society.
» Join Now!